If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+10x=7
We move all terms to the left:
4x^2+10x-(7)=0
a = 4; b = 10; c = -7;
Δ = b2-4ac
Δ = 102-4·4·(-7)
Δ = 212
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{212}=\sqrt{4*53}=\sqrt{4}*\sqrt{53}=2\sqrt{53}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{53}}{2*4}=\frac{-10-2\sqrt{53}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{53}}{2*4}=\frac{-10+2\sqrt{53}}{8} $
| 1/2b-11=21 | | 2h^2+2=-126 | | m−13.84=4.26 | | 30=x13+x^2 | | 2u+18=-8(u+9) | | 11x-41=58 | | 84=7x-3x | | ((7x+4.5)^(5/3)/(2x+8.414)^2/3)=32.5 | | m+290=-305 | | 20=√625-x^2 | | 42=7x-3x/2 | | 100x+200=75x+350 | | 6x+1+29+90=360 | | 5=1/2x=5 | | w-6=25 | | 49+90+x=360 | | 49+x=360 | | -8−7j=-8j | | 9^6x+2=199 | | 6-(-2x)=6 | | -8v=-9v+1 | | -7r+3=-8r | | 5(m-1)=-2+9+5 | | -5x+7=-14+8 | | 48(2×-1)=8(x+5)+2x | | (28)2/4=x | | 110+35+x+12=360 | | u-1/3=23/3 | | 4=88/u | | 8x-19=8+7x | | -120-x=60-10x | | 5/4x-1/6=7/6x |